Relationship between the CaF_{2} (C 1) and CdCl_{2} (C 19) Structure Types, with Assorted Remarks on C 19, Anti-C 19, and Related Compounds

OSVALD KNOP
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada

Received April 9, 1982

Abstract

It is shown how the $6:(3+3)$-coordinated $A B_{2}$ layer structure of the $C 19$ type can be derived by continuous rhombohedral distortion from the cubic 8:8-coordinated C 1-type structure. The magnitude of the distortion actually observed (as manifested in the c/a ratio per $A B_{2}$ layer, R_{1}) is considered in relation to geometric factors, with particular attention to the competing $\mathrm{Cdl}_{2}(\mathrm{C} 6)$ structure type. Reasons are suggested for the nonoccurrence of the C 19 structure type among $M(\mathrm{OH})_{2}$ and of the antiC 19 type among the simple hexahalometallates(IV), $A_{2} M X_{6}$. Finally, the structures of alkylammonium hexahalometallates(IV), $\left(R_{n} \mathrm{NH}_{4-n}\right)_{2} M X_{6}$, are surveyed to demonstrate how the charge arrangements of the composite cations and anions in these compounds are able to mimic the structure types encountered with simple $A B_{2}$ compounds.

Although the CdCl_{2}-type (C 19) structure can be derived from the fluorite-type (C 1) structure in a straightforward manner by rhombohedral distortion, ${ }^{1}$ oddly enough this is not pointed out in standard treatises on crystal or structural chemistry (3-8). On occasion (e.g., Ref. (9)) the term "rhombohedrally distorted fluorite structure" is encountered, which, while correct, does not reveal the C 19 structure as a natural alternative to the C 1 structure; references to cubic stacking sequences of layers in the C 1 and C 19 structures (e.g., Refs. ($7,10,11$)) suggest the relationship only obliquely. The connection between the two is perhaps obscured by the ingrained habit of regarding the $C 1$ structure as $8: 4$ coordinated and thus unrelated to the $6:(3+3)$ (or 6:3)-coordinated, layer-type C 19

[^0]structure. Our recent incursions into the systematic structural chemistry of bis(alkylammonium) hexachlorostannates(IV), $\left(R_{n} \mathrm{NH}_{4-n}\right)_{2} \mathrm{SnCl}_{6}$ (Ref. (12) and results to be published), have convinced us of the desirability to demonstrate the relationship explicitly. This is done in the following, where we also compare structural features of compounds of these two and related types.

The C 19 Structure as a Distorted C 1 Structure

To display this relationship, the structure of an $A B_{2}$ fluorite ($F m 3 m, Z=4$, unit-cell dimension a_{F}, A in $4(a)-000$ etc., B in $8(c)- \pm\left(\frac{111}{44}\right)$ etc.) may be described in terms of a primitive rhombohedral cell of symmetry $R \overline{3} m\left(Z=1, a_{\mathrm{rh}}=a_{\mathrm{F}} / \sqrt{2}, \alpha=\right.$ $60^{\circ}, A$ in $1(a)-000, B$ in $2(c)- \pm(X X X), X$ $=\frac{1}{4}$) or the corresponding hexagonal cell (Z

Cl

C 19

C 6

Fig. 1. $A B_{2}$ structures of the C $1\left(\mathrm{CaF}_{2}\right)$, C $19\left(\mathrm{CdCl}_{2}\right)$, and $\mathrm{C} 6\left(\mathrm{CdI}_{2}\right)$ types projected on $(11 \overline{2} 0)$. Small circles, A; large circles, B; thin outline, atoms in (112̃0); heavy outline, two atoms out of ($112 \hat{2} 0$), eclipsed; α, rhombohedral angle; $R_{1}=c / a$ per $A B_{2}$ layer. Broken lines represent contours of the coordination polyhedra of A and B.
$=3, a=a_{\mathrm{rh}}, c=a_{\mathrm{F}} \sqrt{3}, A$ in $3(a)-000$ etc. B in $6(c)- \pm(00 z)$ etc., $\left.z=X=\frac{1}{4}\right)$. The fluorite structure in this presentation (Fig. 1) may be regarded as consisting of $A B_{2}$ layers in an $A B C A B C$. . . stacking sequence, with $c / a=R=\sqrt{6} \sim 2.449$, i.e., 0.816 per layer ($=R_{\mathrm{i}}$). The C 19 structure results by relaxing the constraint on α and X, i.c., allowing α and X to assume values different from 60° and $\frac{1}{4}$, respectively. For $\alpha<60^{\circ}$ (i.e., $R>\sqrt{6}$) and $X \sim \frac{1}{4}$, the separation between the layers increases. Simultaneously, the 8 -coordination of A changes to 6 -coordination, and the 4 -coordination of B to 3-coordination (or $3+3$). For $\alpha>60^{\circ}$ (i.e., $R<\sqrt{6}$ and $X \sim \frac{1}{4}$, the coordination numbers (c.n.) remain the same as in C 1 , but the coordination of A now resembles the $(6+2)$-coordination of the lower-charge cation in cubic pyrochlores. The changes produced by an increase in R are illustrated in Fig. 1.

The shortest interatomic distances in the C 19 structure are
$d(A B)=a R z\left(A, B\right.$ on the same C_{3} axis);
$d^{\prime}(A B)=a\left[\frac{1}{3}+\left(\frac{1}{3}-z\right)^{2} R^{2}\right]^{1 / 2}(A, B$ on neighboring C_{3} axes);
$d(B B)=a(B, B$ in the same B layer $) ;$ $d^{\prime}(B B)=a\left[\frac{1}{3}+4\left(\frac{1}{3}-z\right)^{2} R^{2}\right]^{1 / 2}(B, B$ on opposite sides of an $A B_{2}$ layer); and $d^{\prime \prime}(B B)=a\left[\frac{1}{3}+\left(2 z-\frac{1}{5}\right)^{2} R^{2}\right]^{1 / 2}$ (shortest $B-B$ distances between $A B_{2}$ layers),
where $z=\frac{1}{4}+\delta$. In order that $d(A B)=$ $\left.d^{\prime}(A B), R=\frac{1}{3}(6 z-1)\right]^{-1 / 2}=\left[\frac{1}{6}(1+12 \delta)\right]^{-1 / 2}$; for a fluorite, $\delta=0, R=\sqrt{6}$. For $A B_{6}$ to be a metrically regular octahedron, $d(B B)=$ $d^{\prime}(B B)$ and $R=(2 / \sqrt{6}) /(1-3 z)=$ $(2 \sqrt{6}) /(1-12 \delta)$ or $\sin ^{2} \frac{1}{2} \alpha=3 \Delta^{2} /\left(4 \Delta^{2}+\right.$ $3 z$), where $\Delta=1-12 \delta$. For $\delta=0$ this yields $R=2 \sqrt{6}, R_{1} \sim 1.633, \alpha \sim 33.56^{\circ}$.

Thus the passage from the 8:4C 1 structure to the 6:3 C 19 layer structure is accomplished by a continuous, topology-preserving rhombohedral distortion of the cubic structure. The C 19 structure then emerges as a natural displacive alternative to the fluorite structure, and this is in keep-
ing with the well-known observation that the character of simple (i.e., with A, B not composite) $A B_{2}$ C 19 compounds is more ionic than that of the corresponding compounds having the other commonly occurring type of layer structure, CdI_{2} (C 6). ${ }^{2}$ One would expect the continuous nature of the geometric deformation process to be re-

[^1]flected in a continuous (though not necessarily monotonic) variation of the Madelung constant, and hence the electrostatic energy, with R_{1} and z.

Magnitude of the Distortion Actually Observed

The distribution of the observed R_{1} values according to the mean linear unit-cell dimension $\bar{a}=(V / Z)^{1 / 3}$ is shown in Fig. 2. ${ }^{3}$ This plot is self-consistent in that it depends only on quantities derived directly from the crystallography of the compounds in question and not on external parameters. As might be expected, for simple $A B_{2}$ compounds the $R_{1}(\mathrm{C} 19)$ values cluster about
${ }^{3}$ Where no reference is given, details of the structural information will be found in Refs. (6, 7, or 13).

Fig. 2. Distribution of the C $1, C 19$, and C 6 structures among $A^{2+} B_{2}^{-}$and $A^{2-} B_{2}^{+}$(anti) compounds according to the mean linear unit-cell dimension $\bar{a}=(V / Z)^{1 / 3}$ and R_{1} (or the rhombohedral angle α). $1 \mathrm{MHT},\left(\mathrm{MeNH}_{3}\right)_{2} \mathrm{TeCl}_{6}$, low- (LT) and high- (HT) temperature phases; 1EHP, ($\left.\mathrm{EtNH}_{3}\right)_{2} \mathrm{PtCl}_{6}$. The heavy horizontal bars (displaced from $R_{1}=0.816$ for clarity) indicate the \bar{a} existence ranges of compounds reported to have structures of the C 1 (Fm 3 m) type.
$R_{1}=\frac{2}{3} \sqrt{6} \sim 1.633$, the value corresponding to a metrically regular $A B_{6}$ octahedron. Notably different R_{1} (C 19) values obtain for the anti-C $19 \mathrm{Cs}_{2} \mathrm{O}$ and for $\gamma-\mathrm{TaS}_{2}, \mathrm{CdCl}_{2}$, and PbI_{2}, although none of these compounds has an R_{1} as low as the C 6-type $M(\mathrm{OH})_{2}$ and some of the $M \mathrm{Te}_{2}$. On the other hand, for the rhombohedrally distorted ordered fluorites LnOF the R_{1} values range from 0.826 (for Y) to only 0.831 (for La), i.e., from $\alpha=59.5$ to 59.2°, if the structure is referred to the rhombohedral unit cell specified above. Thus, while the distortion of the fluorite structure into the CdCl_{2}-type structure, geometrically, is a continuous process, for the simple C 1 and C $19 A B_{2}$ structures actually observed there
is a gap in the R_{1} variation, indicating that, physically, the two structure types correspond to two nonoverlapping stability ranges.

Clearly, at some point an abrupt changeover occurs from the C 1 to the C 19 structure type, such as from $\mathrm{Rb}_{2} \mathrm{O}$ to $\mathrm{Cs}_{2} \mathrm{O}$. The existence of this discontinuous changeover is associated with both the relative and the absolute size of the participating atoms (Fig. 3). However, the point for $\mathrm{Cs}_{2} \mathrm{O}$ in the r_{A} / r_{B} vs \bar{a} plot for simple $A B_{2}$ compounds ${ }^{4}$ almost falls on the continuation of the curve for the anti-C $1 M_{2} \mathrm{O}(M=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb})$, so the factors responsible for the sudden

[^2]

Fig. 3. Separation of the structure types for simple $A B_{2}$ halides, hydroxides, and $M_{2} \mathrm{O}$ alkali oxides according to the ionic-radius ratio r_{A} / r_{B} and the mean linear unit-cell dimension \bar{a}. The first digit of the code number refers to the anion, the following digit(s) to the cation. Solid straight lines, best linear fits for a particular B; solid curves, best fits to $r_{A} / r_{B}=\left(k_{1} \bar{a}-k_{n}\right)^{-1}$ for a particular A; broken lines, $r_{A} / r_{B}=$ (K/r $\left.r_{B}\right) \bar{a}-1$ (see text).

Fig. 4. Same as Fig. 3 but for the full range of r_{A} / r_{B} and \bar{a}.
structural changeover must be other than those reflected in the atomic size as represented by the empirical "effective" ionic radii.
An analogous situation exists in simple $A B_{2}$ compounds having the C 6 layer structure, not derivable by simple deformation of the fluorite structure. Here the lower R_{1} (C 6) limit falls almost halfway between the ideal R_{1} values for the undistorted packings: in the superconductor $\operatorname{PdTe}_{2} R=$ 1.270 , i.e., $R_{1}=1.555 \times \frac{1}{3} \sqrt{6}$.

To what extent the gap between the C 1 and C 19 structures can be decreased by application of external pressure does not appear to be known. The very slightly rhombohedrally distorted stoichiometric LnOF fluorites transform on heating into the disordered cubic fluorites even at pressures as high as $40 \mathrm{kbar}(15,16)$; at still higher pressures and temperatures a partial or complete conversion into a dense, probably nonstoichiometric phase of the PbCl_{2} type ($P n m a, Z=4$) was observed (17).
On the other hand, when A or B or both are composite ions, e.g., in $\left[M \mathrm{O}_{2}\right] \mathrm{F}_{2}$ ($M=$ $\mathrm{U}, \mathrm{Np}, \mathrm{Pu}),\left[\mathrm{N}_{2} \mathrm{H}_{6}\right] \mathrm{F}_{2}$, or in the anti-C 19 $\left[\mathrm{MeNH}_{3}\right]_{2}\left[M X_{6}\right](M=\mathrm{Pd}, \mathrm{Pt}, \mathrm{Sn}, \mathrm{Pb}, \mathrm{Se}$, $\mathrm{Te} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) (9), the R_{1} values can be much closer to $R_{1}(\mathrm{C} 1)=\frac{1}{3} \sqrt{6}$ than to R_{1}
(C 19) $=\frac{2}{3} \sqrt{6}$. However, the tendency to form a cubic arrangement is strong. Thus the $\left[\mathrm{N}_{2} \mathrm{H}_{6}\right] \mathrm{Cl}_{2}(\mathrm{~Pa} 3)$ structure is a variant of the fluorite structure with ordered $\mathrm{N}_{2} \mathrm{H}_{6}^{+}$ ions, and similarly, $\left[\mathrm{Me}_{3} \mathrm{NH}_{2}\left[\mathrm{SnCl}_{6}\right]\right.$ (Pa 3 , $Z=4$; to be published) is a variant of the anti-C 1 structure with oriented $\mathrm{Me}_{3} \mathrm{NH}^{+}$ ions; the alkali and ammonium $A_{2} M X_{6}$ occur widely as $\mathrm{Fm} 3 m$ antifluorites, and several $\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2} \mathrm{MCl}_{6}$ are also of this type. In the alkylammonium compounds the distortion of the anti-C 1 structure evidently is determined by the concerted effects of the $M X_{6}$ size and the shape of the cation rather than by a reduction in the ionic character, so that the R_{1} values may be regardedunlike in simple $A B_{2}$ compounds-as evolving in a continuous manner from R_{1} (C 1), keeping in mind that a natural discontinuity will be present because of the nonexistence of substitutents intermediate in size and shape between H and $\mathrm{CH}_{3} .{ }^{5}$ In the anti-C 1 alkylammonium compounds dipo-

[^3]lar and hydrogen-bonding interactions result in the formation of cation $X_{3} M X_{3}$ • cation groupings with the alkyls on the outside. In the anti-C 19 crystals these groupings are aligned parallel, so that the alkyl groups form apolar layers separating the cation $\cdot X_{3} M X_{3} \cdots$ cation sandwiches.

In $M \mathrm{O}_{2} \mathrm{~F}_{2}(M=\mathrm{U}, \mathrm{Np}, \mathrm{Pu})$ the linear (OMO$)^{+}$ions are on threefold axes. Although $M-\mathrm{O} \sim 1.9 \AA, R_{1}$ is only about 1.25 . This is because the vertical extension of the $O M O$ groups is compensated for by an interpenetration of the F and the O layers in such a way that each M atom has, in addition to the two oxygens, six nearest F neighbors at ca. $2.5 \AA$ forming a puckered ring about the horizontal plane passing through M. The resulting arrangement is dominated essentially by a close packing of the O and F atoms (the shortest nonmetal separations ${ }^{6}$ varying between ca. 2.7 and $2.8 \AA$) and consists of flat $F M F$ sandwiches separated by close-packed double layers of O atoms.

An even lower $R_{1}, 1.08$, has been reported for $\mathrm{N}_{2} \mathrm{H}_{6} \mathrm{~F}_{2}$. The arrangement is similar to that in $\mathrm{MO}_{2} \mathrm{~F}_{2}$, but the separation of the $\mathrm{F} \cdots \mathrm{H}_{3} \mathrm{NNH}_{3} \cdots \mathrm{~F}$ sandwiches is more clear-cut. In addition, the $\mathrm{N}_{2} \mathrm{H}_{6}^{2+}(\overline{3} m)$ ion is hydrogen-bonded by normal $\mathrm{N}-\mathrm{H}$. . F F bonds to its six nearest F neighbors.

C 19 vs Other Structure Types

The distribution of the structure types among simple $A B_{2}$ halides, hydroxides, and alkali oxides is shown in the plots of the ionic-radius ratio r_{A} / r_{B} (Shannon's radii appropriate to the c.n.) against \vec{a} (Figs. 3 and 4). These plots are analogous to the Mooser-Pearson plots (20; cf. also Ref.

[^4](8)) of the average principal quantum number \bar{n} against the electronegativity difference $\Delta \chi$, but the separation of the structure types is in terms of geometric (size) parameters. ${ }^{7}$ For clarity, points for the $M \mathrm{O}_{2}$ rutiles are omitted in Fig. 3, but if included they would fall close to the points for the $M F_{2}$ rutiles. It should also be pointed out that the exact positions of the points for the C $23\left(\mathrm{PbCl}_{2}\right)$-type structures and those for the C $6 \mathrm{M}(\mathrm{OH})_{2}$ hydroxides are somewhat uncertain, the former because of the irregular cation coordination and hence an ambiguous c.n., the latter because of the difficulty of assigning a realistic mean radius value to OH^{-}.

The separation for the compounds included in Figs. 3 and 4 is probably as clean as can be achieved in any presentation. The two figures include neither the numerous layer-type (mostly C 6) sulfides, selenides, and tellurides nor AH_{2} hydrides, for the appropriate radii are difficult to assign. In this the $r_{\mathrm{A}} / r_{\mathrm{B}}$ vs \bar{a} plot is less comprehensive that the corresponding Mooser-Pearson plot. On the other hand, the use of "allpurpose" electronegativity values will tend to blur the boundaries of the structure fields in the latter.

If it is assumed that, in the C 1 or antiC 1 structures, $d(A B)=r_{A}+r_{B}, r_{A} / r_{B}=$ $\left(K / r_{B}\right) \bar{a}-1$ for a particular B and $\left[\left(K / r_{A}\right) \bar{a}-\right.$ $1]^{-1}$ for a particular $A ; K=\left(3^{3} / 4^{4}\right)^{1 / 6} \sim$ 0.687. The pertinent lines are shown in Figs. 3 and 4, together with the best empirical fits for series with constant B (linear) and constant A (hyperbolic, $\left(r_{A} / r_{B}\right)\left(k_{1} \bar{a}-k_{0}\right)=1$). The assumed and the empirical line for any

[^5]such series do not coincide, owing to the impossibility of deriving a universally and accurately additive set of ionic radii. The discrepancy is minimum for $M_{2} \mathrm{O}$ but significant for the $M_{2} X$ chalcogenides. Analogous empirical fits were obtained for series other than C 1 and anti-C 1. It is seen that, within the limitations of the representation, these fits are quite satisfactory. Moreover, the points for a series of compounds containing a common cation can be accommodated on the same curve regardless of the structure type, e.g., $\mathrm{Ca} X_{2}$ ($X=\mathrm{OH}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$, and probably also F). ${ }^{8}$

The separation of the C 19 and C 6 compounds calls for comment. The reasons for the preference for the one or the other structure type are not well understood (for an attempted rationale cf. Ref. (22)), partly because of insufficient or unreliable experimental evidence. Leaving aside the C 6 type $M(\mathrm{OH})_{2}$ (see next section), the C 19/ C 6 boundary appears to be slightly to the left of a line drawn through the points for MnBr_{2} and CoBr_{2}. The C 19 points (excepting TiCl_{2} and VCl_{2}) fall on the low- \bar{a} side of this line and the C 6 points on the high- \bar{a} side, with the exception of $\mathrm{NiBr}_{2}, \mathrm{NiI}_{2}$, $\mathrm{ZnBr}_{2}, \mathrm{ZnI}_{2}$, and PbI_{2} (C 19). However, PbI_{2} and ZnI_{2} (and probably also CoBr_{2} and NiBr_{2}) exhibit C 19/C 6 dimorphism, and there is some uncertainty about the existence of NiI_{2} and ZnBr_{2} as C 19 compounds. Practically nothing is known about the conditions of C 19/C 6 interconvertibility. There was no evidence of a transformation when CdI_{2} was quenched from $500^{\circ} \mathrm{C}$ at pressures up to 110 kbar (2); as for the C 19/C 6 transformation of FeCl_{6} near 2 kbar cited in Pistorius (23) comprehensive review of phase relations and structures at high pressures, reference to the original pa-

[^6]per (24) reveals that the structure of the high-pressure phase was only surmised, with no evidence of a C 6 or for that matter any other specific structure. However, it is possible that C 19/C 6 polytypism in $A B_{2}$ layer halides occurs more frequently than the available evidence would seem to indicate. A thorough reexamination of the sructures and polymorphism of $\mathrm{TiCl}_{2}, \mathrm{VCl}_{2}$, $\mathrm{NiBr}_{2}, \mathrm{NiI}_{2}, \mathrm{ZnBr}_{2}$, and ZnI_{2} with this in mind is indicated before attempting a global explanation of the C 19 vs C6 preference.

M(OH) $)_{2}$ Why Not C 19?

On size criteria the $M(\mathrm{OH})_{2}(M=\mathrm{Mg}$, $\mathrm{Ca}, 3 d$) hydroxides would be expected to adopt structures of the C 19 type or related to rutile (Fig. 3). However, their structures are of the C 6 type. The reason for this preference may be sought in the tendency of the OH^{-}groups to align themselves parallel to the c axis. This alignment results in the formation of a layer of H atoms on each side of an $(\mathrm{HO}) M(\mathrm{OH})$ sandwich, $\cdots|\mathrm{O}| \mathrm{H}||\mathrm{H}| \mathrm{O}-$ $|M| \mathrm{O}|\mathrm{H}||\mathrm{H}| \mathrm{O}|M| \mathrm{O} \mid \cdots$; these layers are analogous to the apolar layers separating the $A B_{2}$ sandwiches in the alkylammonium hexachlorostannates(IV) mentioned above. Figure 1 shows that if such an alignment were to take place in a C 19 structure the OH vectors would point with their H ends directly at the M atoms. In a C 6 structure, on the other hand, the collinearity of O, H, and M is avoided. The H atom is equidistant from three M atoms on neighboring threefold axes; the $\mathrm{H} \cdot \cdots M$ separation is appreciably greater, and the $\mathrm{OH} M$ angle is significantly smaller than 180°. For example, in a C 19 structure with a, R_{1}, and the positional parameters corresponding to the actual $\mathrm{C} 6 \mathrm{Ca}(\mathrm{OH})_{2}$ structure, the $\mathrm{H} \cdot . \cdot$ Ca distance would be ca. $2.8 \AA$, whereas the observed $\mathrm{H} \cdot$. Ca distances are 3.48 \AA and the OHCa angles ca. 144°.

Support for the view that the tendency to avoid $\mathrm{OH} M$ collinearity is a factor determining the adoption of the C 6 structure is provided by the following two observa-
tions. The hydroxyhalides $\mathrm{Cd}(\mathrm{OH}) \mathrm{Cl}$ and $\mathrm{Ca}(\mathrm{OH}) \mathrm{Cl}$, in which the OH^{-}and Cl^{-}ions are known to be ordered and form separate OH and Cl layers, crystallize with structures of the $\mathrm{C} 27\left(\beta-\mathrm{CdI}_{2}, P 6_{3} m c, Z=2\right)$ type. The stacking sequence in this structure is such that a Cd and a Cl atom are found on the same threefold axis at the shortest distance of ca. $3.46 \AA$, while there are no Cd atoms collinear with the $\mathrm{O}-\mathrm{H}$ vectors. The H atoms have three equidistant Cd (at ca. $3.75 \AA, \mathrm{OHCd} \sim 146^{\circ}$) and three equidistant Cl (at ca. $2.55 \AA, \mathrm{OHCl}$ $\sim 124^{\circ}$) neighbors each. If the stacking sequence in the C 19 structure is . . CCCC and that in C $6 \ldots H H H H$. . ., in the C 27 structure it is . . HCHCHC . . .; the tendency of the $\mathrm{Cd}-\mathrm{Cl}$ to form a C 19 and that of the $\mathrm{Cd}-\mathrm{OH}$ to form a C 6 sequence are thus both satisfied. If the $\mathrm{Cd}(\mathrm{OH}) \mathrm{Cl}$ structure were of the C 19 type, the $\mathrm{H} \cdot \cdots \mathrm{Cd}$ separation in the $\mathrm{O}-\mathrm{H} \cdot$. Cd collinear groupings expected from the actual dimensions of $\mathrm{Cd}(\mathrm{OH}) \mathrm{Cl}$ would be much shorter, ca. $3.1 \AA$.

Second, there is circumstantial evidence
from ammonium salts. The reluctance of an $\mathrm{N}-\mathrm{H}$ vector to point directly at the M atom of an $M X_{6}$ complex is well documented for the anti-C $1\left(\mathrm{NH}_{4}\right)_{2} M X_{6}$ halides, e.g., $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}$. The NH_{4}^{+}ion has the choice of two orientations, one with the $\mathrm{N}-\mathrm{H}$ vector pointing at M through an equilateral triangle of X atoms, the other with the $\mathrm{N}-\mathrm{H}$ vector pointing symmetrically away from M. The latter choice is adopted in all the cases where the H atoms have been located, and there is ir spectroscopic evidence to support the structural finding (cf. Refs. (25-27)). Although one situation involves an $\mathrm{O}-\mathrm{H}$ dipole carrying a net negative charge and the other an $\mathrm{N}-\mathrm{H}$ group carrying a net positive charge, the orienting effect of these "dipoles" relative to M is the same in both cases.

Figure 5 illustrates the effect of the OH orientation on R_{1} and \bar{a} in several hydroxyhalides. The Cd series is probably the best example:

$$
\begin{aligned}
& \mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{C} 6)-\mathrm{Cd}(\mathrm{OH}) \mathrm{Cl}(\mathrm{C} 27)-\mathrm{CdCl}_{2} \\
& (\mathrm{C} 19)-\mathrm{CdBr}_{2}(\mathrm{C} 19)-\mathrm{CdI}_{2}(\mathrm{C} \mathrm{6}, \mathrm{C} 27)
\end{aligned}
$$

Fig. 5. Effect of OH^{-}on the stacking sequence in $M X_{2}$ layer structurs (see text). The first digit (or letter) of the code number refers to the anion, the following digit(s) to the cation.

The structures of $\mathrm{Cd}(\mathrm{OH})_{1.25} \mathrm{Cl}_{0.75}$ and $\mathrm{Cd}(\mathrm{OH})_{1.4} \mathrm{Br}_{0.6}$ have been reported to be of the C 19 type; their R_{1} values are unexpectedly high and \bar{a} of the chloride is larger than that of the ordered $\mathrm{Cd}(\mathrm{OH}) \mathrm{Cl}(\mathrm{C} 27)$ crystal. This points to OH / X disorder in the C 19 structure. Similarly, R_{1} of $\mathrm{Ca}(\mathrm{OH}) \mathrm{Cl}$ (ordered, C 27) is even lower than R_{1} of $\mathrm{Ca}(\mathrm{OH})_{2}$ if the reported unit-cell dimensions can be relied upon. In contrast, the R_{1} values of the Mg, Co, and Ni hydroxyhalides included in Fig. 5 are all substantially higher than would be expected from their respective \bar{a} values, indicating the existence of disorder even at $\mathrm{OH}: X$ ratios of unity. It is not clear whether or not there is any tendency toward anion ordering within the mixed OH, X layers. The changeover from C 6 in $M\left(\mathrm{OH}_{2}\right.$ to C 19 in $M(\mathrm{OH}) X$ for phases of intermediate compositions undoubtedly is influenced by the relative sizes of M and X and probably involves a fine balance of these and other factors.

$A_{2} \mathrm{MX}_{6}$: Why Not Anti-C 19?

The anti-C 19-type structure does not appear to be adopted by any of the many $A_{2} M X_{6}$ compounds, even though some of them exist in as many as three polymorphs. ${ }^{9}$ However, the anti-C 6 structure is well represented among $A_{2} M \mathrm{~F}_{6}$ and $A_{2} M \mathrm{Cl}_{6}$. Because of the size of the $M X_{6}$ anion the a dimension in these compounds is large, but the c dimension does not increase in proportion: the vertical separation of adjacent A and X layers in an $A \cdots$ $X-M-X \cdots A$ sandwich is only $0.2-0.6 \AA$ in the fluorides and almost zero in the chlorides. This results in R_{1} values which are quite low, $0.78-0.83$ (i.e., close to $\frac{1}{3} \sqrt{6}$),

[^7]compared to those of simple $A B_{2}$ (C 6) compounds (Fig. 2).

Attempts to explain the conspicuous absence of the C 19 structure in $A_{2} M X_{6}$ on steric grounds are at present hampered by the uncertainties of the available information on the metric aspects of the C 6 structures, but the following observation may be relevant. In a C 6 structure the cation atom A is on a threefold axis and coordinated by $3+6+3 X$ atoms. The six X atoms $\left(z\left(X_{1}\right)\right.$. $\sim \frac{1}{4}$) are contributed in pairs by three $M X_{6}$ anions and are almost coplanar with A $\left(z(A) \sim \frac{1}{4}\right)$. One set of three $X\left(z\left(X_{2}\right)=\right.$ $-z\left(X_{1}\right)$) belongs to the same three $M X_{6}$ groups and forms an equilateral $X_{2} X_{2} X_{2}$ triangle below the $A \cdots 6 X_{1}$ quasi-plane. The other set of three $X\left(z\left(X_{3}\right)=1-z\left(X_{1}\right)\right)$ is contributed by three other $M X_{6}$ groups and forms an equilateral $X_{3} X_{3} X_{3}$ triangle above the $A \cdot \cdot 6 X_{1}$ quasi-plane. In this A . . $12 X$ configuration the A atom "sees" three M atoms through the planes of three equivalent $X_{1} X_{1} X_{2}$ triangles at a distance M $\cdots A=\left[\frac{5}{9} a^{2}+z_{A}{ }^{2} c^{2}\right]^{1 / 2}$ and at $A M A$ angles not far from tetrahedral, and a fourth M through the plane of the $X_{3} X_{3} X_{3}$ triangle, at a much larger distance $M^{\prime} \cdots A=\left[\frac{5}{9} a^{2}+\right.$ $\left.c^{2}\left(1-z_{\mathrm{A}}\right)^{2}\right]^{1 / 2}$. The $A \cdots X_{1}, A \cdots X_{2}$, and $A \cdots X_{3}$ distances in a particular crystal are quite similar in the chlorides; in the fluorides the difference between the shortest and the longest $A \cdots$ F distance appears to be of the order of $3-6 \%$ in any one compound. ${ }^{10}$

If $a, R_{1}, x(X), z(X)$, and $z(A)$ remained the same as in the C 6 structure but adjacent $A \cdots X-M-X \cdots A$ layers were displaced so as to form a C 19 sequence, the $A \cdots X_{1}$ distances would remain unchanged but the $A \cdots X_{3}$ distances in the fluorides would become shorter by up to ca. 17% and the $A \cdots X_{2}$ distances by up to

[^8]TABLE I
$A B_{2}$ Structure Types Represented Among
Alkylammonium Hexahalometallates(IV) ${ }^{a, b}$

other
${ }^{*}\left(n-\mathrm{Pr}_{3} \mathrm{NH}_{2} \mathrm{SnCl}_{6}, \mathrm{C} 2 / \mathrm{C}\right.$

[^9]ca. 13%, i.e., below-in some cases well below-the sum of the ionic radii. In the chlorides, where the packing is probably dominated by $\mathrm{Cl} \cdot \cdots \mathrm{Cl}$ contacts, both A $\cdots X_{2}$ and $A \cdots X_{3}$ would increase somewhat, up to ca. 5%, with the result that all three $A \cdot \cdots \mathrm{Cl}$ distances would be more closely similar. At the same time, however, the A atom in both the fluorides and chlorides would "see" the fourth M atom through the triangle of $X_{3} X_{3} X_{3}$ atoms, this time all three belonging to the same $M X_{6}$, at an $M^{\prime} \cdot \cdots A$ distance $\left(1-z_{A}\right) c$ which is not only shorter than the $M^{\prime} \cdots$.

A distance in the C 6 structure, but drastically shorter than even the $M \cdots A$ distance in C 6 . For example, in $\mathrm{K}_{2} \mathrm{PtF}_{6}(\mathrm{C} 6)$, $\mathrm{Pt} \cdots \mathrm{K} \sim 4.5 \AA, \mathrm{Pt}^{\prime} \cdots \mathrm{K} \sim 5.5 \AA$; in $\mathrm{K}_{2} \mathrm{PtF}_{6}(\mathrm{C} 19), \mathrm{Pt} \cdots \mathrm{K}$ would remain unchanged, while $\mathrm{Pt}^{\prime} \cdot \cdots \mathrm{K}$ would decrease to ca. $3.4 \AA$. Similarly, in $\mathrm{Cs}_{2} \mathrm{ThCl}_{6}$, Th $\cdots \mathrm{Cs} \sim 5.9 \AA$ and $\mathrm{Th}^{\prime} \cdots \mathrm{Cs} \sim 7.3 \AA$, but in the hypothetical C 19 variant Th^{\prime} . . Cl would be ca. $4.5 \AA$. Clearly the structural parameters would not remain the same on the C $6 \rightarrow$ C 19 conversion, but the changes would be expected to be small because of the constraints imposed by the
essentially constant $M-X$ distances, $X \cdot$. X contacts, and $X M X$ angles. Considering that the $M^{\prime} \cdot \cdots A$ distances calculated on the above assumptions are almost 40% shorter than the observed distances, it seems probable that even with adjustments in a, R_{1}, and the positional parameters the C 19 configuration would be unfavorable compared with the C 6 configuration. This may well be the reason for the absence of $A_{2} M X_{6}$ (C 19) from the reported $A_{2} M X_{6}$ structures. ${ }^{11}$

$\left(\mathrm{R}_{n} \mathrm{NH}_{4-n}\right)_{2} M X_{6}: A$ Structural $A B_{2}$
 Minicosmos

While in the $\left(\mathrm{MeNH}_{3}\right)_{2} M X_{6}$ compounds there is a tendency to modify the parent anti-C 1-type structure to anti-C 19, replacement of Me by a longer-chain alkyl may take the structure alteration a step further, e.g., to the anti-C 6 type, as in (Et$\left.\mathrm{NH}_{3}\right)_{2} \mathrm{SnCl}_{6}$ and $\left(n-\mathrm{PrNH}_{3}\right)_{2} \mathrm{SnCl}_{6}$. The simpler alkylammonium hexahalometallates(IV) in fact represent a surprising range of the structural alternatives (including distorted varieties) encountered in simple $A B_{2}$ compounds, if one disregards the composite nature of the cation and anion and considers the structures as consisting of arrangements of charge centroids. This is illustrated in Table I. $\left(\mathrm{RNH}_{3}\right)_{2} M X_{6}$ containing R with chains longer than n-propyl have not yet been studied, but their room-temperature structures may well turn out to be variants of the C 6 structure with the alkyl chains of effective cylindrical symmetry arranged in parallel close-packed hexagonal arrays.

Although the C 6 and C 18 types represented in Table I are not derivable by dis-

[^10]tortion from C 1 , the kinship of these structures in simple $A B_{2}$ compounds is demonstrated by the existence of polymorphic transformations such as those in CoTe_{2} :
$$
\mathrm{C} 2 \xrightarrow{\text { high pressure }} \mathrm{C} 18 \xrightarrow{\text { high temperature }} \mathrm{C} 6
$$
(cf. also Ref. (36)). Information on corresponding transformations in the alkylammonium compounds so far is lacking, though $\left(\mathrm{MeNH}_{3}\right)_{2} \mathrm{TeCl}_{6}$ (C 6) has been reported to transform on cooling to 105 K into a C 19 structure containing stacking faults; on heating the crystal did not revert to the C 6 form until 230 K (37).

A fuller discussion of the crystal chemistry and ir spectroscopy of the $\left(R_{n} \mathrm{~N}\right.$ $\left.\mathrm{H}_{4-n}\right)_{2} M X_{6}$ halides will appear elsewhere in the near future.

References

1. V. M. Goldschmidt, "Handwörterbuch der Naturwissenschaften," 3rd ed., Vol. 5, pp. 1128-1154, Fischer, Jena, 1934. [Cited in Ref. (2)].
2. K.-F. Seirert, Fortschr. Mineral. 45, 214 (1968).
3. L. Pauling, "The Nature of the Chemical Bond," 3rd ed., Cornell Univ. Press, Ithaca, N.Y., 1960.
4. R. C. Evans, "An Introduction to Crystal Chemistry," 2nd ed., Cambridge Univ. Press, Cambridge, 1966.
5. P. Niggli, "Lehrbuch der Mineralogie und Kristallchemie," 3rd ed., Vol. 1, Borntraeger, Berlin, 1941.
6. R. W. G. Wyckoff, "Crystal Structures," 2nd ed., Vols. 1-5, Interscience, New York, 1963-1966.
7. A. F. Wells, "Structural Inorganic Chemistry," 4th ed., Oxford Univ. Press, Clarendon, London/ New York, 1975.
8. D. M. Adams, "Inorganic Solids," Wiley, London/New York, 1974.
9. Y. Kume, R. Ikeda, and D. Nakamura, J. Magn. Reson. 33, 331 (1979).
10. D. Babel, Struct. Bonding 3, 1 (1967).
11. W. B. Pearson, "The Crystal Chemistry and Physics of Metals and Alloys," Wiley-Inter. science, New York/London, 1972.
12. O. Knop, T. S. Cameron, M. A. James, and M. Falk, Canad. J. Chem. 59, 2550 (1981).
13. W. B. Pearson, "A Handbook of Lattice Spacings and Structures of Metals and Alloys," Vols. 1-2, Pergamon, New York/London, 1958-1967.
14. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
15. D. B. Shinn and H. A. Eick, Inorg. Chem. 8, 232 (1969).
16. C. W. F. T. Pistorius, J. Less-Common Met. 31, 119 (1973).
17. M. Gondrand, J. C. Joubert, J. Chenavas, J. J. Capponi, and M. Perroud, Mater. Res. Bull. 5, 769 (1970).
18. F. P. Gortsema and R. H. Toeniskoetter, Inorg. Chem. 5, 1217 (1966).
19. D. W. A. Sharp and J. Thorley, J. Chem. Soc. 3557 (1963).
20. E. Mooser and W. B. Pearson, Acta Crystallogr. 12, 1015 (1959).
21. R. J. Boyd and G. E. Markus, J. Chem. Phys. 75, 5385 (1981).
22. H. Krebs, "Grundzüge der anorganischen Kristallchemie," F. Enke Verlag, Stuttgart, 1968. [Engl. transl.: "Fundamentals of Inorganic Crystal Chemistry," McGraw-Hill, New York, 1968].
23. C. W. F. T. Pistorius, Prog. Solid State Chem. 11, 1 (1976).
24. A. Narath and J. E. Schirbfr, I. Appl. Phys. 37, 1124 (1966).
25. O. Knop, W. J. Westerhaus, and M. Falk, Canad. J. Chem. 58, 270 (1980).
26. O. Knop, W. J. Westerhaus, and M. Falk, Canad. J. Chem. 58, 867 (1980).
27. O. Knop, I. A. Oxton, W. J. Westerhaus, and M. Falk, J. Chem. Soc. Faraday 2 77, 811 (1981).
28. J. A. Lerbscher and J. Trotter, Acta Crystallogr. Sect. B 32, 2671 (1976).
29. T. R. Brill, R. C. Gearhart, and W. A. Welsh, J. Magn. Reson. 13, 27 (1974).
30. R. W. Berg and K. Nifi sen, Acta Chem. Scand. A 33, 157 (1979).
31. R. B. Corey, Z. Kristallogr. 89, 10 (1934).
32. H. Sowa, U. Drück, and A. Kutogi.u, Cryst. Struct. Comm. 10, 699 (1981).
33. R. W. G. Wyckoff and R. B. Corey, Amer. J. Sci. 18, 437 (1929).
34. R. W. G. Wyckoff, Z. Kristallogr. 68, 231 (1928).
35. M. H. Ben Ghozlen, A. Daoud, and J. W. Rats, Acta Crystallogr. Sect. R 37, 1415 (1981).
36. A. Kjekshus and T. Rakke, Struct. Bonding 19, 85 (1974).
37. K. Kitahama and H. Kiriyama, Acta Crystallogr. Sect. A 34, S302 (1978).

[^0]: ${ }^{1}$ This was noted already by Goldschmidt (1, 2).

[^1]: ${ }^{2}$ In the C 6 structure (Fig. 1) $d^{\prime}(A B)=a\left[\frac{1}{3}+z^{2} R^{2}\right]^{1 / 2}$, $d^{\prime \prime}(A B)=a\left[\frac{1}{3}+(1-z)^{2} R^{2}\right]^{1 / 2}$ (shortest distance between A and B in adjacent $A B_{2}$ layers), $d(B B)=a$, $d^{\prime}(B B)=a\left[\frac{1}{3}+4 z^{2} R^{2}\right]^{1 / 2}, d^{\prime \prime}(B B)=a\left[\frac{1}{3}+(1-\right.$ $\left.2 z)^{2} R^{2}\right]^{1 / 2}$. While in the C 19 structure with $z \sim \frac{1}{4} 8$ coordination of A is achieved by reducing R to $\sqrt{6}$, without the necessity of changing the value of z, in C 6 an increase in the c.n. of A can only be achieved by increasing z (Fig. 1). When $d^{\prime}(A B)=d^{\prime \prime}(A B), z=\frac{1}{2}$ and the coordination figure of A is a hexagonal prism $A B_{12}$ and that of B a trigonal prism $B A_{6}$, i.e., the C 6 structure goes over into the AlB_{12} (C 32)-type structure.

[^2]: ${ }^{4}$ Using Shannon's (14) $r^{\text {vi }}\left(\mathrm{Cs}^{+}\right)$derived from a set including CsF and compounds other than $\mathrm{Cs}_{2} \mathrm{O}$.

[^3]: ${ }^{5}$ Although the NO^{+}ion in $(\mathrm{NO})_{2} M X_{6}$ might be expected to give rise to rhombohedrally distorted antiC 1 arrangements, $(\mathrm{NO})_{2} \mathrm{PtF}_{6}$ (18) and (NO$)_{2} \mathrm{PtCl}_{6}$ and $(\mathrm{NO})_{2} \mathrm{SnCl}_{6}$ (19) at room temperature have been reported as cubic and thus presumably anti-C 1, Fm3m (with statically or dynamically disordered NO orientations) or $P_{a} 3$ (ordered (NO) $\cdots X_{3} M X_{3} \cdots$ (NO)

[^4]: groupings). The unit-cell dimensions of the two hexachloro compounds are compared in Ref. (19) to those of the corresponding K salts, but the a values given cannot be correct.
 ${ }^{6}$ It should be noted that the $z(\mathrm{O})$ and $z(\mathrm{~F})$ values were chosen to give the expected interatomic distances (cf. Ref. (6)).

[^5]: ${ }^{7}$ While the presentations are different, the results are similar. The number \bar{n} is reflected in \bar{i} : for example, for the anti-C $1 M_{2} X(M=\mathrm{Li}, \mathrm{Na}, \mathrm{K} ; X=\mathrm{S}, \mathrm{Se}$, Te ; and $\mathrm{Rb}_{2} \mathrm{~S}$), $\bar{a}=-2.424+4.526 \dot{n}^{1 / 3}, r^{2}=0.980, \sigma=$ $0.074 \AA$. Furthermore, χ of the elements in a group (or period) can, in a first approximation, be represented as a linear function of the ionic radius, especially when nonempirical (electrostatic) electronegativities (21) are used. Thus if $\chi_{\mathrm{an}}=A_{0}+A_{1} r_{\mathrm{an}}$ and $\mathrm{X}_{\mathrm{cat}}=C_{0}+$ $C_{1} r_{\text {cat }}, \Delta \mathrm{X}=\chi_{\text {an }}-\chi_{\text {cat }}=K_{0}-K_{1}\left(r_{\text {cat }} / r_{\text {an }}\right)$ for a series with the same anion.

[^6]: ${ }^{8}$ The fitting of the common-cation curves for the $\mathrm{Ni} X_{2}$ to $\mathrm{Ca} X_{2}$ series was confined to compounds with the layer structures, even though the respective fluorides in fact would have been accommodated, especially if a small allowance had been made for the uncertainty in the $r_{\mathrm{A}} / \mathrm{r}_{\mathrm{OH}}$ ratios.

[^7]: ${ }^{9}$ For example, $\mathrm{K}_{2} \mathrm{MnF}_{6}, \mathrm{Cs}_{2} \mathrm{VF}_{6}$, and $\mathrm{Rb}_{2} \mathrm{TiF}_{6}$ each occur as anti-C 6, anti-C 27, and anti-C 1 polymorphs. The Madelung constants and the densities of the polymorphs decrease in this order, which also appears to be the order of the thermal stability ranges of these structures (cf. Ref. (10)).

[^8]: ${ }^{10}$ The $\left(\mathrm{NH}_{4}\right)_{2} M X_{6}$ present the additional complication of trifurcated $\mathrm{N}-\mathrm{H} \cdots 3 X$ bonding (cf. Refs. (26) and (27). The difference in the $A \cdots X$ distances in the fluorides is larger, in excess of 6%.

[^9]: ${ }^{a} \mathrm{C} \mathrm{1}, \mathrm{CaF}_{2} ; \mathrm{C} 2, \mathrm{FeS}_{2}$ (pyrite); $\mathrm{C} 6, \mathrm{CdI}_{2} ; \mathrm{C} 18, \mathrm{FeS}_{2}$ (marcasite); C $19, \mathrm{CdCl}_{2} ; \mathrm{C} 35, \mathrm{CaCl}_{2}$.
 ${ }^{b}$ The asterisks refer to our own recent crystal-structure determinations (Ref. (12) and to be published).
 ${ }^{c}$ For simple $A B_{2}$ compounds.

[^10]: ${ }^{11}$ A similar argument would of course apply to the anti-C 27 structure, but to a lesser extent: the structure is polar and a possibility of asymmetric adjustment of the vertical $M \cdots A$ distances exists. Accurate determinations would be required to test the reasonability of the argument in this case.

